2512.11358v1 [quant-ph] 12 Dec 2025

arXiv

Why cut-and-choose quantum state verification
cannot be both efficient and secure

Fabian Wiesner! @, Ziad Chaoui! @, Diana Kessler? ®, Anna Pappa!
and Martti Karvonen?®

! Technische Universitit Berlin, Germany
2 Tallinn University of Technology, Estonia
3 University College London, UK

Abstract. Quantum state verification plays a vital role in many quantum cryp-
tographic protocols, as it allows the use of quantum states from untrusted sources.
While some progress has been made in this direction, the question of whether the most
prevalent type of quantum state verification, namely cut-and-choose verification, can
be efficient and secure, is still not answered in full generality. In this work, we show
a fundamental limit for quantum state verification for all cut-and-choose approaches
used to verify arbitrary quantum states. We provide a no-go result showing that
the cut-and-choose techniques cannot lead to quantum state verification protocols
that are both efficient in the number of rounds and secure. We show this trade-off
for stand-alone and composable security, where the scaling of the lower bound for
the security parameters renders cut-and-choose quantum state verification effectively
unusable.

Keywords: Quantum state verification - Security limitations.

1 Introduction

For much of cryptography’s history, security has been assumed but not proven. Even today,
we rely on protocols whose security proofs are based on conjectured hardness assumptions
[KL14]. In the comparably young field of quantum cryptography, many protocols claim
provable security under the assumption that the devices used in these protocols are
trustworthy. Although they offer a real advantage in tackling modern cryptographic
challenges [GRTZ02, PAB'20], they often come with two caveats:

1. Quantum hardware is expensive and difficult to operate and maintain. This is
particularly true for quantum computers and their main building blocks, such as
implementations of entangling gates [Prel8].

2. The devices might not be trustworthy. To assume otherwise might in fact be a very
strong assumption; someone untrusted could be operating the device, or there could
be a hardware-based attack that leaks important information, as was done in the
past for quantum key distribution systems [LWW10].

Interestingly, these two issues are connected. Indeed, one way to address the first issue
is to delegate some complex tasks to other parties while ensuring they execute them as
required. Quantum correlations provide a way to check that the operations and tasks at
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hand are executed correctly. In the most general case, this is done through a framework
called “Device-Independence” [ABGT07], where the parties involved in the protocol can
verify that the operations performed are correct, without putting any trust in the hardware.
In this paper, we focus on one specific task: quantum state verification. Quantum state
verification is crucial to a variety of applications, such as network parameter estimation
[SHM22], in which certain parties (the clients) cannot prepare a required quantum state
themselves! and therefore need to query a potentially dishonest source. Usually, in quantum
state verification protocols, the untrusted source prepares quantum states and distributes
them among the clients who are sometimes considered honest. If the source is honest, it
always prepares the target state, i.e. the state the clients desire to hold, and the clients
accept the result. However, if the source is dishonest, it might not always send the target
state, and the clients should ideally reject it. Due to the no-cloning theorem, clients cannot
simply measure and use the quantum states sent by the source. Hence, some other form of
verification is necessary. A typical way to verify quantum states is for the source to send
several copies of the state, some of which are then measured by the clients. If sufficiently
many measurements match the expected state, the clients are convinced the source is
honest. This cut-and-choose type of verification is used in many applications, such as
anonymous conference key agreement [HdJP20], network parameter estimation [SHM22],
and blind quantum computing [HM15]. With the emergence of quantum technologies and
the effort to build a secure quantum internet [WEH18], these applications are of increasing
importance. For cut-and-choose quantum state verification to be a viable subroutine to
all these protocols, we expect it to be composably secure. While composable security is
usually defined with respect to a certain framework (e.g. abstract cryptography), one
can prove negative results in a more general way. Indeed, we present a no-go result for
such verification techniques, which is valid for composable security (independent of the
framework) as well as for stand-alone security.

1.1 Our contribution and related work

Many protocols implement quantum state verification for different types of states, e.g.
[MTH17, TM18, PCW*12, UM22]. However, all protocols we are aware of solely rely on
cut-and-choose and suffer from the same efficiency vs. security trade-off: a quantum state
verification protocol cannot be both secure and efficient. We investigate this trade-off in a
more general setting and prove the following no-go result for quantum state verification.

Theorem 1 (Main result (informal)). Let 7 be a cut-and-choose protocol for quantum
state verification in which the clients output the state without performing any map on it,
if they evaluate the source’s behavior as honest. At least one of the following statements
about ™ with security parameter X\ is false:

1. 7 rejects the target state with a probability negligible in X.

2. If the source is dishonest, either the probability to accept or the distance to the target
state is negligible in .

3. The number of rounds N is polynomial in X.

Regarding composable security, we find with g being the distinguishability to the idealized
process if the source is honest and €p if it is not

Vi
4N’

INote that if the clients could prepare the required quantum state, they would not query the untrusted
source and would not use quantum state verification

eg +ep >
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where 1y is the highest eigenvalue of the target state (i.e. 1 if the target state is pure).
Regarding stand-alone security, we find with kg being the fidelity between the honest output
and ¢ and kp being the fidelity of the dishonest output and pp & (1 — p)? mazimized over p

KH + Kp > N

We state and prove these results more formally in Section 3. We show that for a
generic cut-and-choose protocol described in Algorithm 1 the inequalities of Theorem 1
hold. These inequalities imply a trade-off between correctness, security, and efficiency: A
protocol with high correctness, that is with high ey or kg, has low security, i.e. low ep or
Kkp, and vice versa. The efficiency of the protocol is given by the number of rounds IV, and
we can see that the lower bounds for the sums of correctness and security scale inversely
with the round numbers. Similar trade-offs have been proven in other works before in
the hypothesis testing framework3. More specifically, the previous works showing similar
trade-offs [PLM18, ZH19] consider a protocol to be (g, d)-secure, if the probability that
the client accepts the behavior of the source is upper bounded by § when the deviation
from the honest behavior is intolerable. This deviation is defined to be intolerable if the
fidelity between the average output state of the protocol p and the target state ¢ is upper
bounded by 1 — &, where the average output state is obtained by the composition of any
attack of the source and the protocol of the client, i.e.

Prlaccept|F(p,¢) <1—¢] <4

Intuitively, this means that the probability that the client outputs a state that is too
different from the target state should be low for all attacks the source might use. Using
this definition and the assumption that the acceptance probability if the source is honest
is 1, the authors of [PLM18] and [ZH19] showed that for a quantum verification protocol
for any pure target state ¢ with a fixed number of N + 1 rounds, it holds that*

Prlaccept|F(p,¢) <1—e] = (1 —ce)™ <6

N> In(9)

In(1 — ce)
where ¢ = 1 in [PLM18] and ¢ < 1 is a constant in [ZH19] which depends on the verification
strategy.
Both, [PLM18] and [ZH19], assume that the clients perform single-round tests, i.e., do
not use coherent measurements, although in [PLM18] the authors argue that this is not a
restriction. However, our work differs from [PLM18, ZH19] in many aspects. First, the
assumptions differ: we allow for coherent measurements, we derive a bound for mized
target states as well, do not require perfect correctness, and, very importantly, we do not
consider a fized number of rounds. While we note that single-state measurements suffice
to optimally distinguish pure states and that one could use Uhlmann’s theorem to derive
a bound for mixed states as well, a fixed round number is a strong assumption for the
protocol. Especially if the client does not use coherent but uncorrelated measurements, one
can randomize the number of rounds, e.g., as in [PCWT12], to obtain protocols outside of
the scope of previous results. Indeed, there is an intuitive attack against protocols with
a fixed round number: An attacker always sends the target state except for one round,
for which it sends an orthogonal state, guessing that this is the output round. Such an
intuitive attack is generally not available if the round number is randomized or the attacker
is i.i.d.-restricted.

2Note, that we consider the abort probability 1 — p in a one-dimensional space using the direct sum,
see the Section 2 for more details.

3See [YSG22] for a review on quantum state verification focused on the hypothesis testing approach.

4Note that dividing by In(1 — c¢) changes the direction of the inequality since In(1 — cg) < 0.
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However, our perspective on the topic also differs from that of previous works. In
contrast to [PLM18, ZH19], we do not use the hypothesis testing framework, which is not
common in many areas of quantum cryptography, despite being useful for quantum state
verification. We argue, in line with [YDK21, CMY24], that quantum state verification
should be viewed as a building block of larger protocols and hence investigate composability
as well. Because of this difference, we developed a framework-agnostic proof technique
by refuting an implication of security that all composable security frameworks share, i.e.
we find a lower bound on the trace distance between ideal and real output states of a
general quantum state verification protocol, which implies a no-go result in the different
frameworks for composable cryptography. For both types, composable and stand-alone
security, we present i.i.d. attacks that break cut-and-choose quantum state verification.
While we find, for a fixed round number, that the intuitive attack is optimal for stand-alone
security, our presented i.i.d. attack achieves a higher violation of composable security. We
expect that our proofs can be adapted for other functionalities for which hypothesis testing
is less common.

So while a direct comparison of the different bounds is not reasonable due to the differences
in the security definitions and assumptions, a summary and comparison of the assumptions
with the previous results is presented in Table 1.

Table 1: Summary of results regarding the trade-off. Note that while [ZH19] considers
arbitrary attacks, in [PLM18] only i.i.d. attacks are possible.

Assumptions about the protocols as discussed above: 1) Fixed round number, 2) pure
target state, 3) perfect correctness, 4) No coherent measurements for verification.

Security type Bound Assumptions
[PLM18] Hypothesis testing | N > % 1,234
[ZH19] Hypothesis testing | N > lnl(rll(_ézg) 1,234
This Work, Lem. 2, 3 and Thm. 7 | Fidelity-based eg+ep >Ny | 1,24
This Work, Thm. 8 Fidelity-based ey +ep > 17N -
This Work, Thm. 9 Composable eg+ep > YavynN | -

Finally, our results provide bounds for self-testing as well [vB20]. Self-testing is slightly
different from quantum state verification, since there is a single client that does not trust
any of their devices, including the preparation and measurement apparatus. Self-testing
can therefore be seen as a stricter case of quantum state verification. Hence, any attack
on quantum state verification implies an attack on self-testing.

1.2 Structure

Our work is structured as follows: In Section 2, we first present preliminaries that we need
for our security proofs. In Section 3, we provide first the no-go result for a fidelity-based
security definition and then for generic composable security with an i.i.d. restriction for
the attacker. In Section 4, we investigate optimal attacks outside of the i.i.d. setting.
Finally, we discuss open questions and possible implications of our work in Section 5. In the
appendix, we present a generalization of our no-go result for protocols with a probabilistic
round number, and the security proof for a specific protocol, which provides guidance
regarding the tightness of the bounds we prove and the advantage of more advanced
attacks.
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2 Preliminaries

In the following we present some preliminaries — mainly on quantum information theory —
that we need for our security analyses in the subsequent sections.
We denote by D(X) the space of density operators on the Hilbert space X. For a

density operator p € D(X), we define the trace norm to be ||p|j1 == Tr( ppf). P(X) is

the space of all positive semidefinite operators, and we define a (binary) measurement to
be a function of the form p : {0,1} — P(X), satisfying p(0) + u(1) = 1x. For a density
operator p € D(X), (u(b)|p) = Tr(u(b)Tp) is then the probability to obtain measurement
outcome b € {0,1} when measuring p with u. The trace distance yields a bound on the
achievable distinguishing advantage of a measurement between two density operators given
by the Holevo-Helstrom Theorem.

Theorem 2 (Holevo-Helstrom Theorem). Let pg, p1 € D(X) be density operators, and let
A €10,1]. For any measurement y : {0,1} — P(X) it then holds

Mp(0) o) + (1= X) (u(Dlpr) < 5+ 5 1A0 — (1= Vgl (21)

Moreover there exists a projective measurement p : {0,1} — P(X) for which equality is
achieved in (2.1).

To see that this actually gives a bound on the distinguishing advantage, we set A = %
in (2.1) and we obtain

5 )l + 5 (w(Dlpr) < 2 + 2lloo — il
S {(pM)]p1) = 1) + (0)lpo) = (1(0)lpo) = (1(0)]p1) < %Ilpo —pifs- (2.2)

If (u(0)]po) > (11(0)|p1) holds, then (2.2) gives a bound on the distinguishing advantage
| {(11(0)|po) — (11(0)|p1) | which is the absolute value of the difference of the probabilies of
the oucome 0. If, however, (1(0)|po) < (1(0)|p1), we define the measurement operator
~(0) = 1 — p(0) and find (v(0)|po) > (v(0)|p1). Since (2.1) holds for every measurement
we then find

(7(0)[po) = (v(0)|p1) = (1 = (u(0)|po)) — (1 = (1(0)|p1)) = (1(0)|p1) — (1(0)[po) < lllpo — il

Hence, either way it holds

[(1(0)]po) — (1(0)]p1)| < %Ilpo = palls- (2.3)

Another important quantity is the fidelity. The fidelity between two density operators
po, p1 is given by®

F(po,p1) =="Tr ( mplm)2~

Although the fidelity is not a metric, it allows to quantify how close or similar two density
operators are: the higher the fidelity, the closer the states. We also define the infidelity to
be 1 — F(po, p1). For all pure states pg = |¢o)Xt0o| and p1 = |¢b1}(1)1] it holds that

F(po, p1) = (Yol p1 [v0) = | (Wolr) |, (2.4)

5Note that other authors define the square root of this expression as the fidelity.
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where the first equality holds even if p; is not pure. Further, we have the following
properties for all density operators pg, o9 € D(X), p1,01 € D(Y), and A >0

F(po ® p1,00 ® 01) = F(po, 00)F (p1,01). (2.5)
VF(po @ p1,00 ® 1) = \/F(po,00) + \/F(p1,01) (2.6)
F()\pOaUO) = )‘F(pOaUO)’ (27)

where R @ @ denotes the direct sum for linear operators, i.e.

Ripy .. Riy O .. 0
Rl,l Rl,b Ql}l Qlyd R R: 0 0
R = : : : : : : — a,l a,b
®Q S I~ T 0 0 Qir . Qi
Ra,l oo Ra7b Qc,l oo Qc’d : :
0 0 Qei1 - Qcad

The Fuchs-van de Graaf inequalities link the trace distance to the fidelity [Wat18].

Theorem 3 (Fuchs-van de Graaf Inequalities). Let po, p1 € D(X) be density operators, it
holds that

1
L=/ F(po,p1) < 5llpo — p1lli < /1= F(po, p1), (2.8)
1 2 1
(1= 3l = palh) < Fmp) <1l = il (2.9

Using these inequalities and the properties of fidelity, we can easily derive a simple
bound on k-tuples of density operators {(p;, ;) }¥_;:

k k k
(2.5)
Qn-@o| L\ 1-#(@n®e) ¥ 1-T[F 1o )
i=1 =1 i=1
For pure states p = |w><¢|, o = |¢X¢|, it holds that

[ )] — (o)l [ = 2v/1 — [ (¥]9) 12, (2.11)
which implies for p; = |1;X;|, 0; = |ds X

Qr-®n|

(2 8)

1
2

k
= H (Wilei)| (2.12)

1
2
* K ok

For our proofs, we will also use an important result from probability theory: Jensen’s
inequality for concave functions. We use the standard notation E(X) for the expected
value of a random variable X.

Theorem 4 (Jensen’s inequality). Suppose X is a random variable and f : R — R a
concave function. It holds that

FE(X)) = E(f(X)).

In particular for a random variable X with binomial distribution B(n,p), we have

w>2<) PP G). (2.13)
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We will use the following result repeatedly.
Lemma 1. Let g: Rsg — R given by g : x — /1 —a®. g is concave on R>q if a € [0,1].
Proof. To prove the claim, consider the first derivative
dg In(a=')a¥
%(y) = ﬁ-
The first derivative is non-negative, the numerator is non-increasing, and the denominator

is non-decreasing in R>¢ since a € [0,1]. Hence, the first derivative is non-increasing,
which implies that g is concave. O

X ok Xk

Note that we will consider a different but equivalent notation for the mixture of the actual
quantum output of the verification protocol and the abort state. Many works denote such
a state as po + (1 — p) | L)Y L], where p is the acceptance probability, and require that o
lives in a subspace that is orthogonal to | L)} L|. In contrast, we make this orthogonality
more explicit by writing po @ (1 — p). Hence, the state in our notation obeys a direct sum
structure of the space of the quantum output and a one-dimensional abort space in which
1 — p is a sub-normalized state.

We further shall explain the concept of an average state: The average state is the outcome
of the protocol averaged over all branches (i.e., all sampling processes and measurement
outcomes), where each branch is weighted with its probability. By the commutation of the
sum and the direct sum, it holds that the average state for a verification protocol is given
by

Pav = (Z QSpepe> @ Z ge(1 = pe), (2'14)

ecE eckE

where F is the set of all branches, g, is the probability of this branch, p. is the acceptance
probability and p, is the output for each branch.

3 No-go results with i.i.d. attacks

We consider a generic protocol with N + 1 rounds, where in each round, the source sends
one register to the clients. The clients sample according to a distribution w which register
i they use for the output and perform a measurement u; = {{;(0), 1 — ;(0)} on the other
registers. If the outcome is 0, the clients output the remaining register, otherwise they
output the abort signal | LYL|.

Algorithm 1 Generic cut-and-choose protocol.
o € D(X) is the target state,
e N 4 1 is the number of rounds,
ew is a probability distribution on {1,..., N + 1},
o {1i(0) € P(X®N)}<icn41 is a set of measurement operators.

1: The source sends N + 1 registers py1, ..., pN+1-
2: The clients sample which round is used for the output: k +, {1,..., N + 1}
The clients measure pi, ..., Pk—1, Pk+t1, -, PN+1 using {px(0), Lyen — pg(0)}, the out-
come is r € {0, 1}.
if » =0 then
The clients output pg.
else
The clients output | L)L|.
end if

o

® ST
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3.1 Stand-Alone security

In this section, we first present the no-go result for stand-alone security with a fidelity-based
security definition. The security definition we consider is rather simple: If all parties
are honest, the output of the protocol should have a high fidelity with the target state.
If, however, the source is dishonest, the clients can abort, which is why we consider the
optimal abort probability and compute the fidelity of the output with the target state
probabilistically mixed with the abort state. As mentioned in Section 2, we expand the
space ¢ lives in by the one-dimensional abort space using the direct sum. The average
states of the clients when the source is honest or dishonest, py and pp, have the same
structure: The first part of the direct sum represents the actual quantum state the clients
get if they accept and the second part is the probability that they reject. To simplify the
notation we don’t write out the implicit one dimensional abort state, and only write the
abort probability.

Definition 1. Consider a quantum state verification protocol with a target state ¢. Denote
with pg the average state of the clients if all parties are honest. We define the protocol to
be ey-correct if

In the case where the source is dishonest, we denote with pp the average state of the
clients. We define a quantum state verification protocol to be € p-secure against a dishonest
source if
max F(pp,pp & (1—p)) >1—ep. (32)
p€(0,1]

Intuitively, (3.2) demands that the average output state for any attack the source
conducts is at most ep different from the closest state the client could get if there was
the possibility to abort (with probability 1 — p) without replacing the actual quantum
register. So while (3.1) punishes a high abort probability if the source is honest, a high
abort probability should not be disadvantageous if the source is dishonest. Further, note
that the maximization over the ideal acceptance probability p € [0, 1] in (3.2) is only of
notational relevance and does not imply a deviation from the security definition as used in
e.g. [CMY24]. In fact, it holds that

(s Foppo & =) 2 1-2p) & (€ 0.1]: Plopups & (1-p) 21-2p).
pelo,

And since F(pp,pp & (1 —p)) is continuous in p, as one can see using (2.6), (2.7) and
(2.14), and [0,1] is a compact set, the maximum always exists. However, providing an
upper bound one has to consider the maximization over p € [0, 1] either way.

Now we are equipped to prove one of our main results; the trade-off for cut-and-choose
quantum state verification protocols with regard to stand-alone security as defined in
Definition 1. Theorem 5 formalizes this trade-off, i.e., that cut-and-choose quantum state
verification cannot be simultaneously correct, secure, and efficient. More specifically, (3.3)
states that a low incorrectness, corresponding to a low g, implies a high insecurity ¢p.
The efficiency of the protocol is given by the number of rounds, and the lower bound scales
inversely to the round number: The fewer rounds the protocol requires, the higher the
lower bound for the incorrectness and insecurity.

Theorem 5. Let m = (w¢,mg) be a protocol as described in 1. If w is egy-correct and
ep-secure according to definition 1, it holds

1



F . Wiesner et al. 9

Proof. In the proof, we use the property of the fidelity under the direct sum for both
settings, the honest one and the dishonest one, and simplify and add the resulting equations.
Finally, the i.i.d. property of the attack allows us to discard the probabilities w(n), and
known inequalities and optimized choices for the parameter of the attack yield the result.
We start by denoting

N+1
i =D wli) (m(0)|6=Y),

=1

N+1

PR =) w(i) (pi(0)[®N),

i=1

where 9 is the state of which a dishonest source sends N + 1 copies in an i.i.d. attack.
Then pf and pZ are the average probabilities that the clients accept the verification in
the honest and dishonest case, respectively. We find

pr =pio @ (1-pi),
which implies by (2.6)
Flpm, ¢ ®0) = pif = ey >1-pj. (3.4)
If the source is dishonest and sends N + 1 copies of ¥ we find
pp =phv @ (1-ph),

which implies again by (2.6)
2
F 1—p) = 1-pH)(1 -
max, (ppsp9 @ ( nax (\/pA F(¢, %) +4/(1 —p2)( p))

=ep > min <1 - (\/2: F(¢,9) +4/ (1 —pR)(1 —p)>2> :

When considering

=./pa++/1—pb
we find for a,b >0 and 0 < p’ < 1:
d , a b a? b2 a?
— = - =0 — = ep =——5
f@") N AN I —p p
Using this for maximizing f? yields

2 a? b? ? 2 2
max = + =a“ + b°.
pel0,1] /) (\/(12 +02  VaZ+ b2>

Using a = \/pR F(¢,%) and b= /1 — p} gives

ep>1-— maX]F(pD,pd) & (1-p)=1— pLF(s,%)+1—pR) =pR(1 - F(¢,v)),

p€el0,1

which is smaller than 1 — F(pp,¢ @ 0) =1 —pLF(¢,v) and 1 — F(pp,(0-¢) @ 1) =
Combined with the bound for ey, we find that

en+ep > 1—p +pR(1—F(¢,9) > (1 - F(¢,9)) (1 —pH) + (1 — F(¢,¥))p3
=(1—F(¢, ) (1— (pl —pR)) = 1= F(¢,v) (1 - |p}f —pZ]).
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Ipfl — pR| is the distinguishing advantage, i.e. the absolute value of the difference of the
measurement probabilities, when distinguishing ¢®~ and ®" using p; averaged over i.
Therefore, using the Holevo-Helstrom theorem (in particular (2.3)) and (2.10) we find

N+1
i — P2l < Z w(i) [{ps(0)[¢®N) — (i (0) ||
;_1 N+1
< 5 197N = 0| S wii) < (/1 - F(o.) Y. (3.5)
i=1

Combined with the above, this means

e tep > (1— F(6.)) (1 . F(MW) |

Now we define 7 := (1 — F(¢,v)), i.e. F(¢,¢) =(1—7):
€H+ED>T<1— 1—(1—T)N>.

With a € [0, 1], we choose 7 = @/n, and using (1 — o¢/N)N > 1 — a we get

« a\N «
sH+5DzN<1 1*(1*N) )ZN(l\/a):hN(a), (3.6)

which is maximized for oz = 4/9 since

dhn 3N 4
_— = N _ — = = —
o (ap) 5 Vag=0= ag 9
and hN(O) = hN(l) =0.

This in turn yields

> > —,
CHYED 2 ooy 27N

3.2 Composable security

We consider composable security definitions following the ‘real world vs. ideal world’
paradigm. Such security definitions have been presented for universal composability (UC)
[Can20], abstract cryptography (AC) [MR11], and categorical composable cryptography
[BK22, BK23] (CCC); for every attack on the implementation, there has to be an attack on
the ideal resource which makes the two settings indistinguishable up to some £ > 0. While
in AC and UC, a simulator translates attacks on the implementation into attacks on the
ideal resource, in CCC, the user chooses the ideal attack more freely. We omit the actual
security definitions and focus on finding a lower bound on the trace distance between
ideal and real output states, which translates into a no-go result for the above-mentioned
frameworks for composable cryptography. Agnostic of the actual framework, we consider
the ideal resource in Fig. 1 for quantum state verification for a target state ¢.
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QSV
8¢>

P _ ¢ ife=0 c —0
PN ife=1 €=

Figure 1: Ideal quantum state verification: The source chooses whether to be honest or
not by inputting a bit ¢ € {0,1} to the ideal resource S(?SV. If it is honest, ¢ is 0 and the
ideal resource sends the target state ¢ to the clients. If the source is dishonest, ¢ can be
set to 1 and the clients receive an abort signal. The right box fg represents a filter that
enforces honest behavior of the ideal resource if the source is honest, i.e. fg fixes the input
¢ = 0. In case the source is dishonest, we ignore the filter which allows the source to input
c=1.

Regarding correctness, the Holevo-Helstrom theorem (Theorem 2) states that the dis-
tinguishing advantage when given ¢ from the ideal resource or pg from the implementation,
is given by the trace distance, i.e. eg-correctness implies

1
Sllon = (9@ 0)l, <en

For security, if the source is dishonest, we need to consider all possible ideal attacks or
simulators, respectively. However, all an ideal attack or simulator can do at the interface
of the ideal resource is to input ¢ = 0 with some probability p which might depend on the
attack on the implementation. While a distinguisher (or attacker) has the freedom to use
a private register to increase the distinguishing advantage, it suffices for our no-go result
to omit such register, i.e. composable security up to ep implies with pp being the output
state of the implementation

1
. L _
i 2 lpp = (po® (1 —=p)ll; <ep

but not necessarily vice-versa. Note that the minimization over all probabilities comes
from the choice of the ideal attack or simulator, respectively.

Theorem 6. Let 7 = (w¢,ms) be a protocol as described in Protocol 1. If

1
o — (62O, < e
and

1
in = |lpp— 1— <
Jnin o lpp — (p¢p ® (1 =p)|l; <ep

It holdseg+ep > 4‘/\/77% if ¢ is mized and 1y is the largest eigenvalue of ¢ and eg+ep > ﬁ
if is ¢ pure.

Proof. Similar to Theorem 5, we use the properties of the trace distance for each setting,
honest and dishonest source, separately, and add the resulting lower bounds. Next, we fix
that type of states that the source uses for the attack and derive in an intricate analysis,
a lower bound for the trace distance of N copies of the target state and the state the
dishonest source sends, which is similar to the trace distance of N pure states. Finally,
known inequalities and optimized parameter choices prove the lower bound claimed in the
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theorem.
We first note that for any positive semidefinite operators Py, Pi, Q¢ and @ it holds

1(Po & P1) = (Qo @ Qu)lly = [1Po — Qolly + [1Pr — @l -

As before, we denote

We find
pr=pio © (1-pi),
which implies
w > 5l — (6©0)] =1 pf
If the source is dishonest and sends N + 1 copies of ¥ we find
pp =pRY © (1-p3),

which implies, using the triangle inequality

D
D >pg5q]§||pp—(p¢ & 1-p)h = mgll]gllpw pol, + Ip—pAI

= min = |[pR% ~ po]|, + 5lpo — PRl > %Anw—mh-

pel0,1] 2

Now, we can combine both settings and find

D
p 1
en+tep > S| —olly +1-pi > 5w - el (1- |ph - p2]).

Using (3.5), we find
cirken > 10 - ol (1- 565 -6, ) 1)

In the next step, we fix ¢). We write ¢ in spectral decomposition as ¢ = Z?:l 0 | i Y i
with d = rank(¢) and n; > n;41 for 1 < i < d. For some pure state |x), we fix ¢ =

m OO+ %, 1i [6:X¢i]. This implies
1
516 =2l =m V1T (3.8)

In the case of N copies, things become more complicated. We first note that

N = > Qmileiel,

Ae{l,....d}N i€A

and similarly with [y;)(xi| = [6:)(@i] for i # 1 and [xa)| = (x|

N = 3 Q@ mi hal -

Ae{l,...,d}N i€A
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Hence, we find

PN — BN = Y Q) mi )il — & i [xi)xi

Ae{l,....d}N LicA i€A

Now consider the trace norm of this difference. We find an upper bound using the triangle
inequality in a way, such that we group the terms for which the positions of the 1s in A
are the same, i.e. we get 2V trace differences. Next, using the unitary invariance of the
trace norm, we can move all positions corresponding to 1 in A to the front. Next, we use

1" @ M=) — pF @ eI = o — o5 |l I,

with p1 = m[@1)d1], p2 = m[x1)xa| and v = S, mi|#iXei|. Now, we note that
[N =D|; = (1 —n)¥ =" So we find

)N—’L'.

1 TN 1 i i
gleo = uel, < 3 ()5 flonkent® - hot®
=0

177%(1 -m

Using the expression for the trace distance of pure states (2.11) and Jensen’s inequality
for concave functions with a binomial distribution (2.13), with f: 2z — /1 — | (é1]x) |?*
(cf. Lemma 1) and binomial distribution B(N,n;), we find

Y /N . ,
2o — v, <3 ( ; )m —[{o1ho Pmi (1 = )™~
=0

< 1=l 2o,

So for ey + ep we find

it en = my/ T TP (1= /1= o) ).
Writing 7 := /1 — | {¢1]x) |? yields
en+ep > mr (1—\/w>.

Choosing 7 = @/\/m N gives us using (1 —a/N)¥ >1—a

ey +ep > a\/nT/\/ﬁ(l —a).
The optimal value for « is 1/2, hence we find

N

eg+ep 2> .
4V N
In particular, for pure states this gives us
1
eEg+ep >

,m.

O

This provides directly a lower bound for composable security definitions as used in

[MR11, BK22]. The distinguisher can implement the presented attack without an auxiliary

register. By design of the ideal resource, the simulator can only accept or reject with some
probability; hence, the relevant measure for this attack is in fact the trace distance.
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4 Optimal attacks

With a similar proof technique, we now prove our no-go result for more complex attacks
without the i.i.d. restriction. We study optimal attacks, attacks leading to the highest
security violation, i.e. that maximize ey + ep. By dropping the i.i.d. restriction, we
study the case where the dishonest source is free to send an arbitrary state in every round.
Nevertheless, we still consider the attacker, i.e. the dishonest source, to act in the class of
separable state attacks. More precisely, we demand that there is no entanglement between
states from different rounds, i.e., an attacker sends separable states {1, ;V:’Lll This class, in
fact, contains a naive attack that could lead to the clients sharing a state that is orthogonal
to the desired output, which is the maximal deviation possible. In this naive attack the
source guesses which round will be used for the output and sends for this particular round
an orthogonal state, but for all other rounds it sends the actual target state to minimize
the risk of getting caught.

This naive attack and its comparison to the i.i.d. attacks motivate this investigation.
N+l oy

Lemma 2. If ¢ in Protocol 1 is pure and an attacker sends separable states {1); J=1

holds

N+1
Flpn,0) = 3 w(i)pn (i)
= N+1
Juax F(op,pé @ (1=p) = 1= 3 w(@lpp(@)(1 = F(¥:,9)),
’ i=1

where py is the output state in the honest setting, pp the one if the source cheats and

N+1
pu(i) = <Mz‘(0) 1% ¢’>

j=1j#i

N+1
poli) = <m(0) ® wj>-

J=1j#i

Proof. The proof uses the property of the fidelity under the direct sum and results which
we introduced in Theorem 5.
In Protocol 1, we find if the source is honest:

N+1 N+1
pH = (Z w(i)PH(i)> oD (1 -> w@)PHU)) ;

=1 =1
and
N+1
Flpm, ¢ ®0) =Y w(i)pm(i),
=1

which is already the first part of the statement. In the dishonest setting, we find

N+1 N+1
pp =y w(ilpp(i)di & (1 - w(l’)m(%’)) :

=1 i=1

Similarly, as in the previous section, this implies

N+1 N+1
max F(pp,pp &1 —p) = [ p\| F <Z W(i)pD(i)1/’ia¢> +V1-py|1- Z w(é)pp (i)

p€0,1] o)
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Using max,e(o,1)(y/pa + I — pb)? = a® + b?, we find

N1 N1
max F(pp,pp@®1—p)=F <Z W(i)PD(i)Tl)i,éb) + (1 -> WU)PDU)) :

pE(0,1] i=1 i=1

The assumption that ¢ is pure implies

N+1 N+1
Juax Fop,pé @ 1=p) = 3 w(i)po(i) (¢l v:16) + (1 - w(z‘)m(z’))
i=1 =1
N+1 N+1 N+1
— Z F(i,9) ( Z ) = 1= w@pp()(1 = F($i,0)).

Lemma 3. Let w be a quantum state verification protocol as described in Protocol 1 for a
pure target state ¢, ey be the lowest value that fulfills (3.1) and ep be the lowest value that
fulfills (3.2), i.e., the best possible security parameter in fidelity-based security (Definition
1). If an attacker sends separable states {1p;}> ', it holds

J=1
N+1 N+1
aH+eD>Z F(gi,9) (1=, 1= [ F@.¢) |, (4.1)
J=1,j#i

where the inequality is saturated if the protocol uses optimal measurements to distinguish
the target state from any other state, and the source sends pure states.

Proof. The result follows from the previous lemma, the Fuchs-van de Graaf inequalities,
and the Holevo Helstrom theorem. We start by using Lemma 2 and find find

N+1 N+1
en+ep =y wi)(1—pnuli +Z ~ F(ti,9))
Mo

=Y w@) (1 = pa()) +ppG) (1 — F(ti, ).

i=1

If the protocol uses optimal measurements to distinguish a pure target state from any other
state, then pgy (i) = 1, which implies (1 — F(¢;,¢)) (1 — pu(i)) =1 — pg(i). If the protocol
uses other measurements it holds that (1 — F(i;,¢)) (1 — pu(i)) <1 — pg(i). Hence,

N+1 N+1
5H+5D:Z w(i) (1 —pa(i +Z — F(i, 9))
o
> w(@)(1—F(i,¢) (1= (pu(i) —pp(i))),

1

<.
I

where the inequality is saturated if the protocol uses optimal measurements. One finds by
(2.1), (2.10) and Theorem 3 that

N+1 N+1

pu() = po@) < lpn@) —pp@I < 2 || & - & o < 1- [ Fo.u),

J=1,j#i j=Lji#Fi ||y J=1,j#i

[\
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where the inequalities are saturated if the measurements are optimal, and the states the
source sent are pure. Hence, one finds that

N+1
en+ep > > wi)(1-Fue) |1- 1= ] Flo.4y) |,
i=1 J=1,j#i
where under the mentioned assumptions the inequality is saturated. O

We show that an attack in which the attacker sends an orthogonal state in one round
and the target state in all other rounds maximizes this bound.

Theorem 7. Assume ¢ is pure, hence, there exists at least one state ¢ such that
F(¢,¢%) = 0. This allows for an attack where F(1j, ¢) = 1—03;, with maxi<j<n1w(j) =
w(l). This attack is optimal in the class of separable state attacks with regard to the bound
presented in (4.1).

Proof. We first derive an inequality which implies that the bound presented in (4.1) cannot
exceed wy. We prove this inequality using the non-negativity and concavity of log(z + 1)
and eventually demonstrate that the attack described in the claim yields exactly wy inserted
in the bound presented in (4.1).

We denote the right hand side of (4.1) as the function By : [0,1]¥* — [0,1] and first
prove that for £ € (0,1]V*! we have

N+1 N+1
By(f) =Y wi)(i—f) [1- 1= ] #] <w®. (4.2)
=1 j=1,5#1

We use 1 — /1 -0 f; <IN, f; and find

j=1,j#i j=1,j#i
N+1 N+1 N+1 N+1 1— f N+1 N+l f;
By() <y w@-f) | II =114 «® 5o sw) I+ i
i=1 j=1,j#i j=1 i=1 v j=1 i=1 v
So (4.2) follows from
N+l ) N+l /g N+1
Z f,f = Z (f _1> < H 7 (4.3)
i=1 ‘ i=1 \7° i=1 7"

which we now prove. First note that log(z + 1) is non-negative and is concave, i.e. for
a,b>0

log(a+b+1) <log(a+1)+log(b+ 1),

meaning log(z + 1) is sub-additive. Further, log is strictly increasing and thus preserves
inequalities. Hence, we find for (4.3)

N+1 1 N+1 1 N+1 1 N+1 1
S (51)<Mg= 1°g(”§ (ﬁ_1>> <> (7 )

i=1 i=1
Nt1 N+l
= log — | <log| 1+ — 1,
(IL7) <1117

which implies (4.2).
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We now consider f € [0,1]¥+! and define the set Ag = {i |1 <i < N +1,f; =0}. We
note that By (f) is non-zero only when A is empty or a singleton. Indeed, if two or more

fi = 0 it holds that 1— /1 — JT". - fi =0forallie{1,..., N+1}. However, if A is a

Jj=1,j#1i
singleton, i.e. A¢ = {k} we find By(f) = w(k) <1 —4/1— H;V;l}#k fj). The case where
Ay is empty is covered in the first half of the proof. Hence, we find that By (f) < w(¢)
and get equality for the described attack. O

The described attack in Theorem 7 maximizes the bound proved in Lemma 3. This Lemma
also proves that if the protocol uses optimal measurements, the target state is pure and the
source sends pure states, the bound is saturated. Hence, for such an optimal protocol for a
pure target state, the presented attack is optimal in the class of separable state attacks, i.e.,
no other separable state attack can achieve higher violation of security. Indeed, Lemma
5 in the appendix even implies that a larger security violation is not always possible,
since it proves that a specific choice of parameters in Protocol 1 yields 0-correctness and
1/N+1-security for stand-alone security where w(i) = 1/N+1 for all 0 < 4 < N +1 was chosen.
While the presented attack is the intuitive and naive approach to break verification, it was
unknown if it was optimal in the class of separable pure-state attacks. However, while this
all holds with respect to the fidelity-based security definition, interestingly, the statement
is false for composable security definitions, as we show in the remainder of this section.
We start with the composable version of Lemma 2.

N+1 it

Lemma 4. If ¢ in Protocol 1 is pure and an attacker sends separable states {1); J=1

holds

1 N+1
§||/J'H —¢@0[1 =1~ ; w(i)pw (i),
1 1|
3, min oo —ps @ (1=plli = || > w@po ()i = 9)|
=1 1

where py s the output state in the honest setting, pp the one if the source cheats and
pu (i) and pp(i) are defined as in Lemma 2.

Proof. We start with the honest setting. When the source is honest, the output state is
N+1 N+1
o= 3 w00 (13- alomn).
i=1 i=1

This implies

1 N+1 N+1 N+1
glon =600 = 5| 3 w@pu@o—o| +3]1= 3 wlpa(i)| =1= 3 wlioa()
i=1 i=1 i=1
If the source is dishonest, the output state of the protocol is
N+1 N+1
pp = Y w(i)pp(i); @ (1 -> WU)PD@) ;
i=1 i=1
which implies
N+1 N+1
min 2 Lop —pse (1= p)l = min 5 ; w(@)pp ()i — po 1 +5lp— ; w(i)pp (i)
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On the one hand, with p = 211\;-1{1 w(#)pp (i) we find

1 N+1
i 3l =90 @ (=) < 3 |3 w@molw—o)|

On the other hand, we find using the triangle inequality and multiplication by 1 = ||¢||1:

1 N+1 1 N+1
. - o1 Voo (i) — 1) N
min, 5llpp = pd & (1= p)lh Jnin o ;w(l)pp(zw ¢ 1 +35 |pe ;wmm(zm 1
1 N+1
>3 ; “(@po()i=4) -
which proves the claim. O

Now we can easily show that the naive approach of sending an orthogonal state for the
round with the highest output probability and the target state in all other rounds is not
always optimal. If the target state is pure and the protocol uses optimal measurements,
we find for this specific attack that

N+1

> w(@)pp (i) (v — ¢)

i=1

- )

1 1
ol - 1
Jnin 3 lpp —po ® (1 —p)|1 5

Il
o

1
§||PH — ¢ ® 0|y

since for all 7 # ¢ it holds 1; = ¢ which implies pp(¢) = 1 for optimal measurements and
Yy = ¢+ which implies 1/2|[10y — ¢||1 = 1. With the specifications of the protocol being
w(i) = 1/N+1, we find for this specific attack on this protocol ey + ep = I/N+1 < I/N.
However, we already know that there is an i.i.d. attack such that ey +ep > /avN if ¢
is pure by virtue of Theorem 6; hence, we find that the naive approach is not optimal if
N > 16.

5 Discussion

Quantum state verification is of utmost importance for quantum cryptography. We
demonstrate that implementations using the popular cut-and-choose approach cannot
succeed in a desirable parameter regime even if the attacker is restricted to i.i.d. attacks.
Further, we find that the naive approach for protocols with a fixed number of rounds
is optimal for the fidelity-based security definition but exhibits a suboptimal scaling for
composable security. Indeed, the bound of 1/4v/~, which we prove for composable security,
has a tight scaling as implicitly shown in the appendix (cf. Lemma 5). This tight scaling
and the tightness of the naive approach (cf. Theorem 7 and Lemma 5) for fixed round
numbers pose a crucial problem for quantum state verification, especially in the context of
composed protocols, even against rather limited attacks, such as i.i.d. attacks. While we
restrict the protocol type in the main part of this work to a fixed number of rounds, we
prove the same bounds for a probabilistic number of rounds in the appendix (cf. Theorems
8 and 9), further closing loopholes to circumvent this no-go result. Importantly, this
protocol type was not affected by previous works, and intuitive approaches to break
verification are only available for a few combinations of distributions for the number of
rounds and output round.

Our proofs furthermore shed light on an interesting trade-off in the attack between
the acceptance probability and the deviation from the target state. While the intuitive
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attack discussed in Section 4 yields a constant fidelity of 0 accepted with a probability
1/N+1 for a uniform choice of the output round, the acceptance probability in the i.i.d.
attacks converges to a constant and the trace distance decreases or fidelity increases in
the number of rounds. For example, we find for composable security that the acceptance
probability for a protocol that projects onto a pure target state is lower bounded by 1/2
and the trace distance between the sent state and the target state is 1/2v~N. Hence, even
with 10* rounds, the probability of accepting a state that is (at least) 1/200 apart from the
target state is at least 1/2.

Nevertheless, we note that quantum state verification is not a lost cause; although
the cut-and-choose approach cannot yield desirable security using composition theorems
or in a stand-alone fashion, one might prove security of a composition with cut-and-
choose quantum state verification in a non-modular fashion. Further, other verification
mechanisms, such as error detection, might allow for better security but fall out of the scope
of this work, which was about the direct cut-and-choose approach for verification. Finally,
further research is needed to evaluate the potential of quantum state verification in general,
and we need to find out where techniques similar to ours provide further limitations and
where positive results with negligible distinguishing advantage can be found.
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A A more general protocol type

While we already provide our no-go result for a rather general type of protocols, one might
want to go a few steps further in generalization. The most important aspect that is missing
in the main matter is a probabilistic round number: one might choose not to fix the round
number in advance but during the protocol. While we do not model the communication
between the source and the clients in detail, we introduce the following parameters:

e Q:N — [0,1] is the probability distribution that governs the number of verification
rounds. The total number of rounds is one plus the number of verification rounds.

o (wn:{0,...,n} = [0,1]),en, is a sequence of probability distributions for the output
round.

o pn,i(0) € Pos(X®") is the measurement operator associated with acceptance in the
protocol when the protocol uses n rounds and outputs in round 1 < i < n.

We now derive the bound for this protocol for stand-alone security.

Theorem 8. Let m = (w¢,mg) be a protocol as described above. If 7 is ey -correct and ep
secure according definition 1, it holds

1
p
ey t+ep > TN

where N is the expected number of verification rounds.

Proof. The proof follows the same ideas as the proof of Theorem 5 but uses Jensen’s
inequality to discard the probabilistic round number. We first set

P = (pn,i(0)]| %)
pq?,i = <Nn,i(0)|'¢)®n>~

where v is the state the dishonest source sends for each round. Now, we can define

pa =)0 Y wali)py
n=0 =0

PR =) Qn) Y wa(py,
n=0 =0

and find
eg > 1— pf
ep = pR(1— F(¢,9))

following the same manipulations as in the proof of Theorem 5 with an i.i.d. attack using

(G

Hence, we find for the sum of e and ep
en+ep > 1—ph +p3(1-F(,0)) > (1 - F(¢,9)) (1 - [pf — pR]).
Now the differences between the protocol types come into play, as [pX — pZ| is the expected

distinguishing advantage with a probabilistic number of states, i.e., using (2.10):

n

pH —pR1=>Y_2n) ) wali)lp, —pld <D ﬂ(n)% |6 —v®" || <> Q)1 - F(p, )
n=0 n=0

=0 n=0
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As f(n) = /1 —a™ is concave for 0 < a <1 (cf. Lemma 1) we can use Jensen’s inequality

and find

where N is the expected number of verifications. Combined with the above, this means

entep > (1— F(6,0)) (1 . F(W)N) |

Now we set 7 := (1 — F(¢,)), i.e. F(p,9)=(1—7):

€H+6D>T<1—m>.

We choose 7 = @/~ and get
a
en+ep > — (1—va),
N
which is optimal for o = 4/9, as was shown in the proof of Theorem 5, which gives

+ >i>i
FHTED = 9uN S UN

O
We also find the same result as for the simpler protocol type with regard to composable
security.

Theorem 9. Let 7 = (w¢,mg) be a protocol as above. If
1
L low — @O, <o
and

1
in = |lpp — 1— <ep.
Jmin 3 lop — (pp ® (1 =p)ll; <ep

It holdseg+ep > 4‘\//7% if ¢ is mized and 1y is the largest eigenvalue of ¢ andeg+ep > ﬁ
if ¢ is pure.

Proof. As in the previous theorem, we can use the result for a fixed round number (Theorem
6) by using Jensen’s inequality. Again we denote

an,i = <Nn,i(0)|¢®n>
ph i = (pn,i(0)[®")

P =>0mn)) pk
n=0

=0
PR = m)> ph.
n=0 =0

Following the same line as for the proof of Theorem 6, we find

D
p 1
en+ep > B — gl +1-p > 5 16— ol (1 |4 —pR)).
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Again, we fix 1) now. We write ¢ in spectral decomposition ¢ = Z?Zl ni |@i X ;| with

Nit1 < m; for 1 <4 < d. We fix ¢ = n1 |[x)}x| + Z?:Q 7 |9 )(¢s| for some pure state |x).
This implies

S llo— vl = my/ T @I P (A1)

In the case of n copies, we utilize the result from the proof of Theorem 6 and find

S lo%m —ven, < VI- T P,

This implies that

o n
o =R =S 0m) S wa @), - p?,
n=0 1=0

<3 S 0m)ls= - e,
n=0

<D Q)1 [{dilx) P,

We use concavity and Jensen’s inequality and Lemma 1 again and find

I — Bl < /1 o) [P,

where NNV is the expected number of verification rounds. So for ey + ep we find

eg+ep > nl\/W(l — \/1 — {1 ]x) |2771N) ,

We know from the proof of the bound for the simpler protocol that we can choose |x) such
that

N
4N’

Y

EH +ED
In particular, for pure states this gives us

€H +€p 2 ——=.

B Tightness of scaling

In order to investigate how tight the lower bounds that we provide are, we analyze the
correctness and security of a protocol of the type shown in Protocol 1, in which the target
state is pure, every round has the same probability to be the output round, and the
measurement is always a projection onto IV copies of the target state. We find that this
choice of parameters yields a protocol which is perfectly correct in both, stand-alone and
composable security, 1/N+1-secure in stand-alone and 2//~N+i-secure in composable security,
respectively.

These results are in line with the i.i.d. bound of 1/7~5 given for stand-alone security in
Theorem 5, the i.i.d. bound of 1/4v/~N given for composable security in Theorem 6 and the
bound for stand-alone security of !/N+1 given by the combination of Lemma 2, Lemma 3
and Theorem 7 in Section 4. The last of these three bounds was shown to be optimal in
the class of separable state attacks. Indeed, the following lemma proves that it is optimal,
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since it is tight, in the class of all attacks for the protocol considered in this section. For
the two i.i.d. bounds we can use 1/nv+1 < /N and 2/v~N+1 < 2/VN, which implies that the
protocol is also 1/N-secure in stand-alone and 2/v/N-secure in composable security. Hence,
the lower bounds for e g +ep with the i.i.d. restriction for the attacker we presented before
exhibit the same scaling in NV as the upper bounds for the same quantities for this specific
protocol without restrictions on the attacks. Therefore, the following lemma implies that
the scaling of the i.i.d. bounds is tight and no attack can violate security for all choices of
parameters in Protocol 1 with a better scaling in N. Nevertheless, there might be tighter
general bounds with the same scaling or bounds with better scaling for specific choices of
parameters in Protocol 1.

Lemma 5. Let m = (w¢,mg) be a protocol as described in Protocol 1 where the parameters
are chosen so that

o &= |poXpo| € D(X) is the pure target state,

o foralli € {1,..,N + 1} it holds w(i) = 1/N+1, i.e., every round has the same
probability to be the output round,

o and for alli € {1,...,N + 1} the clients use p1;(0) = |¢%§’N><¢8§N|.
This implies
1. 7 is 0-correct and 1/N+1-secure with respect to Definition 1.

2. m is 0-composable correct with respect to lis(SfSV) and 2/ NFI-composable secure
with respect to Sd;QSV.
Proof. While correctness follows immediately, we use a symmetry argument for security
since the clients choose the output round randomly and bound a sum of diagonal elements
by the trace. Finally, we find the composable security from a known result proven in
[CMY24].
The correctness in the first statement follows from <|(/)0>(¢0|®N‘ |¢0><¢0|®N> = [ {¢o|go) |V =

1. Hence, the protocol is perfectly correct with respect to Definition 1, since the probability
to reject the behavior of an honest source is 0..

If the source is dishonest, we assume that it sends a state ¢ € D(X®V*1) which might
be entangled across the rounds, consider the completion of |¢g) to an orthonormal basis

{\q{)ﬁ}?i:rg(x)*l of X and define Ay, By € U(X®NFY) for £ € {1,...,N + 1} as

dim(X)—1
Ce{loo N} A= 30 (1F7 @10 @16;) @ 1FY) (1R ® (93] © (il @1F7),
4,7=0
Angp =15

le {1, ey N + 1} : By = ANAN,L..A@+1A£,

hence, A is the unitary that exchanges the ¢-th and the (¢ + 1)-th register, and By pushes
the /-th register to the last position. Equipped with these definitions, we find that if the
source is dishonest, the average state is given by

N+1

PD = (<¢0|®N ® ILX) (1\71—1 > BWB}) <|¢0>®N ® ]12() ®
=1

(1 - Tr<<<¢o|®N ® ]l;() <N11 Ni_:lBﬁng) (|¢0>®N ® ﬂx))) )
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where we again used <|¢0><¢>0|®N ‘X> = <¢0|®N % |¢0>®N. Using the behavior of the fidelity
under direct sums and the optimal ideal acceptance probability p we find

N+1

max Fpp,pd & (1=p)) = F <¢7 ((@l*" & 1) <N1+1 > BMBJ) (I60)*" @ u)) +
=1

p€(0,1]

N+1

1- Tr<(<¢)0|®N ® ]IX) (N:—l Z B€¢BZ> (|¢0>®N ® ]IX)>~
=1

Next, we use that F(p, |y)v]) = (7| p|7), express the trace with the basis {|¢0)}dlm(x)71

and apply B, on the vectors instead of the operator and find

N+1
max F(pp,p¢ @ (1 - p)) = (¢o|*" (1 > BMBJ) o) * V!

pe(0,1] N+1 —
dim(X)—1 1 N+1
1= Y (60 @ (0] <N+1 > BM»B}) (160)*" @ I6))
=0 (=1
dim(X)—1 L N
== 3 (@l e wl) <N+1 > Bﬂ/’Bg) (160)°" @ 16)
i=1 {=1

dim(X)—1 N+1

Ni1oo Z( #l® ™ @ (01l @ (60l ) v (I60)° " @ [0) @ 190) N ).
=1

To prove the first claim of the lemma, it is now sufficient to recognize that the sum in the
above equation adds up some of the diagonal elements of ¢». However, since ¢ € D(XN+1),
this sum cannot exceed the trace of ¢, which is 1, i.e.

1
F 1-— >1—- —:.
e F(pp.po® (1-p) 2 1= 5

Composable correctness follows immediately from the impossibility of rejecting the behavior
of the source if it is honest. For the proof of composable security, we refer to [CMY24],
which states (with our definition of fidelity) that

maXF(pDap(b@(l_ ))Z 1-k,
pef0,1]

implies 2v/2k — k2- composable security. Note that if all clients are honest, the necessity
that ¢ is a graph state does not apply, and the ideal resources in [CMY24] are identical to
stv. Since it holds

22k — k2 = 2¢/1— (1 — k)2,

and we just proved max,¢o,1) F'(pp,pp @ (1—p)) > 1— N+1 we can set (1—r)% =1— En
which proves 2/v/N+1 composable security.
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